Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC)

نویسندگان

  • Anupam Agrawal
  • Saurav Goel
  • Waleed Bin Rashid
  • Mark Price
چکیده

In this study, 39 sets of hard turning (HT) experimental trials were performed on a Mori-Seiki SL25Y (4-axis) computer numerical controlled (CNC) lathe to study the effect of cutting parameters in influencing the machined surface roughness. In all the trials, AISI 4340 steel workpiece (hardened up to 69 HRC) was machined with a commercially available CBN insert (Warren Tooling Limited, UK) under dry conditions. The surface topography of the machined samples was examined by using a white light interferometer and a reconfirmation of measurement was done using a Form Talysurf. The machining outcome was used as an input to develop various regression models to predict the average machined surface roughness on this material. Three regression models Multiple regression, Random Forest, and Quantile regression were applied to the experimental outcomes. To the best of the authors’ knowledge, this paper is the first to apply Random Forest or Quantile regression techniques to the machining domain. The performance of these models was compared to each other to ascertain how feed, depth of cut, and spindle speed affect surface roughness and finally to obtain a mathematical equation correlating these variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Surface Roughness in Hard Turning of AISI 4340 Steel using Coated Carbide Inserts

The use of multilayer coated carbide tool in hard turning has several advantages over grinding process such as; reduction of processing costs, increased productivity, short cycle time, compatible surface roughness and less enviornment problems without the use of cutting fluid. In the present study, an attempt has been made to evaluate the performance of multilayer coated carbide inserts during ...

متن کامل

Surface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects

The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...

متن کامل

Experimental Study & Modeling of Surface Roughness in Turning of Hardened AISI 4340 Steel Using Coated Carbide Inserted

Turning of hardened steels using a single point cutting tool has replaced the cylindrical grinding now as it offers attractive benefits in terms of lower equipment costs, shorter set up time, fewer process setups, higher material removal rate, better surface quality and elimination of cutting fluids compared to cylindrical grinding. In order to obtain desired surface quality by machining, pr...

متن کامل

Predicting Surface Roughness of AISI 4140 Steel in Hard Turning Process through Artificial Neural Network, Fuzzy Logic and Regression Models

In this study, the average surface roughness values obtained when turning AISI 4140 grade tempered steel with a hardness of 51 HRC, were modeled using fuzzy logic, artificial neural networks (ANN) and multi-regression equations. Input variables consisted of cutting speed (V), feed rate (f) and depth of cut (a) while output variable was surface roughness (Ra). Fuzzy logic and ANN models were dev...

متن کامل

Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel

An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2015